__main__
— Top-level code environment¶
In Python, the special name __main__
is used for two important constructs:
the name of the top-level environment of the program, which can be checked using the
__name__ == '__main__'
expression; andthe
__main__.py
file in Python packages.
Both of these mechanisms are related to Python modules; how users interact with them and how they interact with each other. They are explained in detail below. If you’re new to Python modules, see the tutorial section Modules for an introduction.
__name__ == '__main__'
¶
When a Python module or package is imported, __name__
is set to the
module’s name. Usually, this is the name of the Python file itself without the
.py
extension:
>>> import configparser
>>> configparser.__name__
'configparser'
If the file is part of a package, __name__
will also include the parent
package’s path:
>>> from concurrent.futures import process
>>> process.__name__
'concurrent.futures.process'
However, if the module is executed in the top-level code environment,
its __name__
is set to the string '__main__'
.
What is the “top-level code environment”?¶
__main__
is the name of the environment where top-level code is run.
“Top-level code” is the first user-specified Python module that starts running.
It’s “top-level” because it imports all other modules that the program needs.
Sometimes “top-level code” is called an entry point to the application.
The top-level code environment can be:
the scope of an interactive prompt:
>>> __name__ '__main__'
the Python module passed to the Python interpreter as a file argument:
$ python helloworld.py Hello, world!
the Python module or package passed to the Python interpreter with the
-m
argument:$ python -m tarfile usage: tarfile.py [-h] [-v] (...)
Python code read by the Python interpreter from standard input:
$ echo "import this" | python The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. ...
Python code passed to the Python interpreter with the
-c
argument:$ python -c "import this" The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. ...
In each of these situations, the top-level module’s __name__
is set to
'__main__'
.
As a result, a module can discover whether or not it is running in the
top-level environment by checking its own __name__
, which allows a common
idiom for conditionally executing code when the module is not initialized from
an import statement:
if __name__ == '__main__':
# Execute when the module is not initialized from an import statement.
...
See also
For a more detailed look at how __name__
is set in all situations, see
the tutorial section Modules.
Idiomatic Usage¶
Some modules contain code that is intended for script use only, like parsing command-line arguments or fetching data from standard input. If a module like this was imported from a different module, for example to unit test it, the script code would unintentionally execute as well.
This is where using the if __name__ == '__main__'
code block comes in
handy. Code within this block won’t run unless the module is executed in the
top-level environment.
Putting as few statements as possible in the block below if __name___ ==
'__main__'
can improve code clarity and correctness. Most often, a function
named main
encapsulates the program’s primary behavior:
# echo.py
import shlex
import sys
def echo(phrase: str) -> None:
"""A dummy wrapper around print."""
# for demonstration purposes, you can imagine that there is some
# valuable and reusable logic inside this function
print(phrase)
def main() -> int:
"""Echo the input arguments to standard output"""
phrase = shlex.join(sys.argv)
echo(phrase)
return 0
if __name__ == '__main__':
sys.exit(main()) # next section explains the use of sys.exit
Note that if the module didn’t encapsulate code inside the main
function
but instead put it directly within the if __name__ == '__main__'
block,
the phrase
variable would be global to the entire module. This is
error-prone as other functions within the module could be unintentionally using
the global variable instead of a local name. A main
function solves this
problem.
Using a main
function has the added benefit of the echo
function itself
being isolated and importable elsewhere. When echo.py
is imported, the
echo
and main
functions will be defined, but neither of them will be
called, because __name__ != '__main__'
.
Packaging Considerations¶
main
functions are often used to create command-line tools by specifying
them as entry points for console scripts. When this is done,
pip inserts the function call into a template script,
where the return value of main
is passed into sys.exit()
.
For example:
sys.exit(main())
Since the call to main
is wrapped in sys.exit()
, the expectation is
that your function will return some value acceptable as an input to
sys.exit()
; typically, an integer or None
(which is implicitly
returned if your function does not have a return statement).
By proactively following this convention ourselves, our module will have the
same behavior when run directly (i.e. python echo.py
) as it will have if
we later package it as a console script entry-point in a pip-installable
package.
In particular, be careful about returning strings from your main
function.
sys.exit()
will interpret a string argument as a failure message, so
your program will have an exit code of 1
, indicating failure, and the
string will be written to sys.stderr
. The echo.py
example from
earlier exemplifies using the sys.exit(main())
convention.
See also
Python Packaging User Guide contains a collection of tutorials and references on how to distribute and install Python packages with modern tools.
__main__.py
in Python Packages¶
If you are not familiar with Python packages, see section Packages
of the tutorial. Most commonly, the __main__.py
file is used to provide
a command-line interface for a package. Consider the following hypothetical
package, “bandclass”:
bandclass
├── __init__.py
├── __main__.py
└── student.py
__main__.py
will be executed when the package itself is invoked
directly from the command line using the -m
flag. For example:
$ python -m bandclass
This command will cause __main__.py
to run. How you utilize this mechanism
will depend on the nature of the package you are writing, but in this
hypothetical case, it might make sense to allow the teacher to search for
students:
# bandclass/__main__.py
import sys
from .student import search_students
student_name = sys.argv[2] if len(sys.argv) >= 2 else ''
print(f'Found student: {search_students(student_name)}')
Note that from .student import search_students
is an example of a relative
import. This import style can be used when referencing modules within a
package. For more details, see Intra-package References in the
Modules section of the tutorial.
Idiomatic Usage¶
The contents of __main__.py
typically isn’t fenced with
if __name__ == '__main__'
blocks. Instead, those files are kept short,
functions to execute from other modules. Those other modules can then be
easily unit-tested and are properly reusable.
If used, an if __name__ == '__main__'
block will still work as expected
for a __main__.py
file within a package, because its __name__
attribute will include the package’s path if imported:
>>> import asyncio.__main__
>>> asyncio.__main__.__name__
'asyncio.__main__'
This won’t work for __main__.py
files in the root directory of a .zip file
though. Hence, for consistency, minimal __main__.py
like the venv
one mentioned below are preferred.
See also
See venv
for an example of a package with a minimal __main__.py
in the standard library. It doesn’t contain a if __name__ == '__main__'
block. You can invoke it with python -m venv [directory]
.
See runpy
for more details on the -m
flag to the
interpreter executable.
See zipapp
for how to run applications packaged as .zip files. In
this case Python looks for a __main__.py
file in the root directory of
the archive.
import __main__
¶
Regardless of which module a Python program was started with, other modules
running within that same program can import the top-level environment’s scope
(namespace) by importing the __main__
module. This doesn’t import
a __main__.py
file but rather whichever module that received the special
name '__main__'
.
Here is an example module that consumes the __main__
namespace:
# namely.py
import __main__
def did_user_define_their_name():
return 'my_name' in dir(__main__)
def print_user_name():
if not did_user_define_their_name():
raise ValueError('Define the variable `my_name`!')
if '__file__' in dir(__main__):
print(__main__.my_name, "found in file", __main__.__file__)
else:
print(__main__.my_name)
Example usage of this module could be as follows:
# start.py
import sys
from namely import print_user_name
# my_name = "Dinsdale"
def main():
try:
print_user_name()
except ValueError as ve:
return str(ve)
if __name__ == "__main__":
sys.exit(main())
Now, if we started our program, the result would look like this:
$ python start.py
Define the variable `my_name`!
The exit code of the program would be 1, indicating an error. Uncommenting the
line with my_name = "Dinsdale"
fixes the program and now it exits with
status code 0, indicating success:
$ python start.py
Dinsdale found in file /path/to/start.py
Note that importing __main__
doesn’t cause any issues with unintentionally
running top-level code meant for script use which is put in the
if __name__ == "__main__"
block of the start
module. Why does this work?
Python inserts an empty __main__
module in sys.modules
at
interpreter startup, and populates it by running top-level code. In our example
this is the start
module which runs line by line and imports namely
.
In turn, namely
imports __main__
(which is really start
). That’s an
import cycle! Fortunately, since the partially populated __main__
module is present in sys.modules
, Python passes that to namely
.
See Special considerations for __main__ in the
import system’s reference for details on how this works.
The Python REPL is another example of a “top-level environment”, so anything
defined in the REPL becomes part of the __main__
scope:
>>> import namely
>>> namely.did_user_define_their_name()
False
>>> namely.print_user_name()
Traceback (most recent call last):
...
ValueError: Define the variable `my_name`!
>>> my_name = 'Jabberwocky'
>>> namely.did_user_define_their_name()
True
>>> namely.print_user_name()
Jabberwocky
Note that in this case the __main__
scope doesn’t contain a __file__
attribute as it’s interactive.
The __main__
scope is used in the implementation of pdb
and
rlcompleter
.